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Abstract—Starting from the first investigations with strictly functional languages, reactive programming has been proposed as the
programming paradigm for reactive applications. Over the years, researchers have enriched reactive languages with more powerful
abstractions, embedded these abstractions into mainstream languages – including object-oriented languages – and applied reactive
programming to several domains, like GUIs, animations, Web applications, robotics, and sensor networks. However, an important
assumption behind this line of research is that, beside other claimed advantages, reactive programming makes a wide class of otherwise
cumbersome applications more comprehensible. This claim has never been evaluated. In this paper, we present the first empirical study
that evaluates the effect of reactive programming on comprehension. The study involves 127 subjects and compares reactive
programming to the traditional object-oriented style with the Observer design pattern. Our findings show that program comprehension is
significantly enhanced by the reactive-programming paradigm – a result that suggests to further develop research in this field.
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1 INTRODUCTION

R EACTIVE applications represent a wide class of software
that needs to continuously and interactively respond to

internal or external stimuli with a proper action. Examples of
such applications include user-interactive software, like GUIs
and Web applications, graphical animations, data acquisition
from sensors, and distributed event-based systems.

Over the last few years, reactive programming (RP) has
gained the attention of researchers and practitioners for the
potential to express otherwise complex reactive behavior in
an intuitive and declarative way. RP was first introduced
in Haskell [1], [2]. Influenced by the approaches based
on Haskell, implementations of RP have been proposed
in several widespread languages, including Scheme [3],
Javascript [4], and Scala [5], [6]. Recently, concepts inspired
by RP have been applied to production frameworks, such as
Microsoft Reactive Extensions (Rx) [7], which received great
attention after the success story of the Netflix streaming
media provider. This growing interest around RP is also
witnessed by the success of the Coursera online class
“Principles of Reactive Programming”, in winter semester
2013-14. Finally, a lot of attention for RP and its principles
can be observed in the community of front-end developers.
An increasing number of libraries have been released that are
inspired by the Flapjax reactive language [4], e.g., React.js,
Bacon.js, Knockout, Meteor, and Reactive.coffee.
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The relevance of RP comes from the well-known com-
plexity of reactive applications, which are hard to develop
and understand, because of the mixed combination of
data and control flow. The Observer design pattern [8] is
widely used for such applications. It has the advantage of
decoupling observers from observables. However, when it
comes to program readability, it does not make things easier,
because of dynamic registration, side effects in callbacks, and
inversion of control [4].

In contrast, RP supports a design based on data flows
and time-changing values: the programmer states which
relations should be enforced among the variables that
compose a reactive program and the RP runtime takes care of
performing all the required updates [9]. Both programming
paradigms differ in several ways. In RP, dependencies are
defined explicitly, while in the Observer design pattern they
result from both control and data flow. In RP, reactions can
be directly composed according to their types as opposed to
callbacks that are composed by sharing a common variable
they read from/write to and return void. Also, in contrast
to the Observer pattern, RP does not feature inversion of
control and generally results in shorter code, since collecting
dependencies and performing the updates is automated by
the runtime.

Based on these characteristics, it has been repeatedly ar-
gued that RP greatly improves over the traditional Observer
pattern used in Object-oriented (OO) programming both (i)
from the software design perspective as well as (ii) from the
perspective of facilitating comprehension of software [3], [4],
[10], [11]. However, there has not been enough empirical
evidence to support these claimed advantages of RP.

Preliminary empirical results seem to confirm the claimed
design benefits (e.g., higher composability) of RP [5]. On
the other hand, even preliminary evidence is missing re-
garding the claim that RP enhances comprehension. Despite
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the intuition about its potential, the reactive style is not
obviously more comprehensible than the Observer design
pattern. For example, in the Flapjax paper [4], a Javascript
application based on the Observer pattern is compared
against a functionally-equivalent RP version. The authors
argue that the RP version is much easier to comprehend.
However, the reader is warned that: “Obviously, the Flapjax
code may not appear any ‘easier’ to a first-time reader”. Doubting,
at this point, is legitimate: does RP really make reactive
applications easier to read? Also, it is unclear how much
expertise is required to find a RP program “easier” – if ever.

To fill this gap, this paper provides the first empirical
evaluation of the impact of RP on program comprehension
compared to the traditional technique based on the Observer
design pattern. The experiment involves 127 subjects that
were divided into an RP group and an OO group. They were
shown several reactive applications and their comprehension
of the reactive functionalities was measured. The experiment
considers several aspects including (i) correctness of compre-
hension, (ii) required time, and (iii) programming-skills level
needed for correct comprehension. We additionally asked
the subjects for their preferred programming paradigms
and for arguments that explain their choice. To the best
of our knowledge, such a study has never been attempted
before. Our results show that the comprehension of reactive
applications is significantly improved by using reactive
programming (as opposed to the Observer pattern). The
answers we received from the subjects suggests that this
improvement may be due to characteristics of reactive
programming, such as reduced boilerplate code and better
readability. In summary, the contributions of this paper are
as follows:

• The first empirical study that shows that reactive pro-
gramming does improve program comprehension, based
on data from 127 subjects. To the best of our knowledge,
this is the largest experiment ever conducted on program
comprehension.

• Qualitative feedback data from subjects that provides
explanations of the perceived differences of reactive
programming and the Observer pattern.

• An outlook on possible directions for reactive program-
ming language design, based on the interpretation of
our results.

This paper is an extension of our previous work at FSE’14 [12],
which presented results on 38 subjects. Compared to the
conference version, we expanded the experiment to include
an additional 89 subjects. This allowed us to run the statistical
tests on a much larger set of subjects. The new data confirms
the conclusions drawn in the conference paper, while even
increasing the statistical significance of the obtained results
and our confidence in their validity. The additional data also
allowed us to extend the analysis of correctness to individual
comprehension tasks. In addition to the program comprehen-
sion tasks, our new experiments added a questionnaire that
sheds light on the interpretation of the controlled experiment
and helps shape directions for future research.

The rest of the paper is organized as follows: Section 2
motivates the work. Section 3 introduces the design of the
study. Section 4 describes the results. Section 5 provides a
qualitative interpretation. Section 6 discusses areas of future

research. Section 7 describes threats to validity. Section 8
presents related work. Section 9 concludes the paper.

2 MOTIVATION

Reactive programming provides dedicated language ab-
stractions for implementing reactive applications. Over the
years, several RP languages have been proposed. Despite
some differences between concrete languages, the following
principles are shared among most approaches:
Declarativeness With RP, programmers state how compo-

nents functionally depend on each other, rather than
providing the computational steps that derive the new
state of a component based on the state of another one.

Abstraction over change propagation RP makes the prop-
agation of change in reactive applications implicit.
Developers do not need to manually update dependent
values, because the language runtime takes care of
change propagation.

Composability RP provides abstractions (e.g., operators
over event streams) to directly compose reactive compu-
tations into more complex ones.

Favoring data flow over control flow In RP, computation is
driven by new data/events flowing into the system,
rather than by the execution following the flow of control
of the application.

These principles result in a diverse set of concrete languages:
Functional Reactive Programming (FRP) [1], [2] focuses on
modeling time in pure functional programming languages.
In FRP, programs consist of a pure composition of time-
changing values: event streams (i.e., discrete time-changing
values) and behaviors (i.e., continuous time-changing values).
Languages such as FrTime [3], Flapjax [4], Scala.react [5],
[6] and REScala [5] embed reactive abstractions into ex-
isting (non-pure) languages. The resulting programming
style mixes reactive and traditional imperative abstractions.
Additionally, side effects are allowed, for example, to update
the state from an event handler attached to an event stream.
Rx [7] and Bacon.js [13] also embed reactive abstractions in
(non-pure) general-purpose languages. They provide event
streams and operators that transform, filter, and combine
event streams, but do not attempt to model continuous time-
changing values.

We focus on the RP flavor promoted by REScala, the
language we adopted for the experiment. The possible impact
of this choice on the results is discussed in Section 7. REScala
supports first-class constraints among program values. These
constraints are automatically enforced by the language
runtime. Throughout the rest of the paper, we adopt the
terminology of REScala [5] and Scala.react [6], which we
will introduce in the following. Constraints are expressed
as signals, a language concept for expressing functional
dependencies among values in a declarative way. A signal
can depend on reactive values with no further dependencies
(referred to as Vars, which are updated imperatively) or
on other signals. Any change to a source on which a
signal depends results in the language runtime automatically
recomputing the expression defining the reactive value. This
is done to keep the reactive value up-to-date. The general
form of a signal c is Signal{expr}, where expr is a standard
expression. When expr is evaluated, all Signal and Var values
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1 val a = Var(1)
2 val b = Var(2)
3 val c = Signal{ a() + b() }
4

5

6

7

8

9

10

11 println(c.getVal()) // 3
12 a()=4
13 println(c.getVal()) // 6

(a)

1 val a = Observable(1)
2 val b = Observable(2)
3 val c = a + b
4

5 a.addObserver( _ =>{
6 c = a + b
7 })
8 b.addObserver( _ =>{
9 c = a + b
10 })
11 println(c.get()) // 3
12 a.set(4)
13 println(c.get()) // 6

(b)

Figure 1: Functional Dependencies using Signals in RP (a)
and the Observer Design Pattern in OO Programming (b).

it refers to are registered as dependents of c; any subsequent
change in them triggers a reevaluation of c.

Consider the example in Figure 1a. The code snippet
defines two vars a and b. When c is declared (Line 3), the
runtime collects the values it depends on (i.e., a and b).
When a is updated (Line 12), all signals that (even indirectly)
depend on it – c in this case – are automatically updated
as well. As the reader probably noticed, the syntax of the
example is a bit cluttered, because of the implementation of
RP as an embedded Scala DSL. Assigning a var requires ()=,
which is translated into a call to the apply method on the
var object. Similarly, vars and signals must appear with the
method call notation () in signal expressions. More details
can be found in the original publications [5], [6].

Old-school Reactivity: The Observer Pattern. In OO lan-
guages, reactive applications are usually developed using the
Observer design pattern [8]. This solution has gained wide
popularity, because it decouples observers from observables,
i.e., observables do not know (hold a static reference to)
observers. Instead, observers register themselves to the
observable they are interested in at runtime. Detractors argue
that programs based on the Observer pattern are hard to
reason about [10]. Below, we summarize the main points that
support this argumentation. For easier illustration, we refer
to the example in Figure 1b, which implements the same
functionality as Figure 1a, following the Observer pattern.

(i) The natural dependency among program entities is
inverted. Conceptually, changes flow from observables
to observers, but in code, observers call the observable
to register. For example, c is registered by calling
addObserver on a (Line 5).

(ii) Programmers need to inspect a lot of code to figure out
the reactive behavior, because functional dependencies
are implicit. To define the dependency from a to c,
programmers register a handler to a that updates c.
When readers encounter c in the code for the first time,
there is no sign that the value permanently depends
on another one, since the update is performed by a
side effect in the handler potentially anywhere in the
program.

(iii) Code is cluttered. Reactive applications that make use of
the Observer pattern are more verbose. The application
logic is hidden behind the machinery required by the
Observer design pattern.

The real impact of the previous issues is not clear though
and each one could be countered with another claim. For
example, (i) contributes to make OO applications too complex
to read at first sight, but, with experience, programmers are
likely to get used to inversion of control. For (ii), the handler
still expresses the functional dependency, even if indirectly.
Concerning (iii), there is no evidence that the Observer
design pattern clutters programs up to the point that they are
significantly harder to read than with an alternative design.

In summary, the claims that RP addresses the aforemen-
tioned issues and improves program comprehension need to
be evaluated empirically.

3 STUDY DESIGN

The claimed advantages of RP include increased compos-
ability, abstraction over state, enforcement of consistency
guarantees during change propagation, and ease of com-
prehension [3], [4], [5], [10], [11]. In this work, we limit the
scope to program comprehension. We argue that this aspect
is crucial, because programs are written once, but read many
times: “Programs must be written for people to read, and only
incidentally for machines to execute” [14]. We consider only
a single alternative to RP, i.e., OO programming and the
Observer design pattern, because it is the most common
solution for reactive applications.

3.1 Research Questions
The overall purpose of our study is to empirically investigate
the impact of RP on the comprehension of reactive applica-
tions. We divide this into two goals: (1) investigating if RP
has an impact on program comprehension, when compared
to the OO style, and (2) why such a difference exists. We
formulate our research questions as follows, where the first
three questions address the first goal and the last question
addresses the second goal.
RQ1: Does reactive programming impact the correctness of
program comprehension?

We are interested in how developers comprehend pro-
grams written in the RP and in the OO styles. We analyze
the correctness of answers to comprehension questions.
RQ2: Does reactive programming impact time for program com-
prehension?

In addition to correctness, we want to investigate if the
required time to comprehend RP programs is different to OO
programs.
RQ3: Does comprehending RP programs require a different
programming-skills level than the OO style?

We are interested in the relation between programming-
skills level and the level of program comprehension for
both RP programs and OO programs. It is important to
measure the impact of programming expertise on the use
of a programming language to know whether it is only
useful for advanced programmers or also exhibits significant
benefits for beginners.
RQ4: What are the reasons for a difference – if any – in
comprehending RP programs and OO programs?

The last question investigates the underlying reasons for
differences we find with respect to RQ1-3.
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1 object Squares_Reactive extends SimpleSwingApplication {
2

3 //−− APPLICATION LOGIC−−−−−−−−−−−−−−−−−−−−
4 object square1 {
5 val position = Signal {
6 Point(time().s ∗ 100, 100)
7 }
8 }
9 object square2 {
10 val v = Signal {
11 time().s ∗ 100
12 }
13 val position = Signal {
14 Point(time().s ∗ v(), 200)
15 }
16 }
17

18

19

20

21

22

23

24

25

26 // painting components
27 (square1.position.changed || square2.position.changed) += {
28 _ => Swing onEDT { top.repaint }
29 }
30

31 //−− Graphics−−−−−−−−−−−−−−−−−−−−−
32 lazy val panel: RePanel = new RePanel {
33 override def paintComponent(g: Graphics2D) {
34 super.paintComponent(g)
35 g.fillRect(
36 square1.position.getValue.x.toInt − 8,
37 square2.position.getValue.y.toInt − 8,
38 16, 16)
39 g.fillRect(
40 square1.position.getValue.x.toInt − 8,
41 square2.position.getValue.y.toInt − 8,
42 16, 16)
43 }
44 }
45 lazy val top = new MainFrame {
46 preferredSize = new Dimension(800, 400)
47 contents = panel
48 }
49 } (a)

1 object Squares_Observer extends SimpleSwingApplication {
2

3 //−− APPLICATION LOGIC−−−−−−−−−−−−−−−−−−−−
4 object square1 {
5 val position = Observable { Point(0, 0) }
6 addTimeChangedHandler { time =>
7 position set Point(time.s ∗ 100, 100)
8 }
9 }
10 object square2 {
11 val v = Observable { 0.0 }
12 val position = Observable { Point(0, 0) }
13

14 addTimeChangedHandler { time =>
15 v set time.s ∗ 100
16 updatePos(time, v.get)
17 }
18 v addObserver { v =>
19 updatePos(now, v)
20 }
21 def updatePos(time: Time, v: Double) {
22 position set Point(time.s ∗ v, 200)
23 }
24 }
25

26 // painting components
27 square1.position addObserver { _ => repaint }
28 square2.position addObserver { _ => repaint }
29 def repaint = Swing onEDT { top.repaint }
30

31 //−− Graphics−−−−−−−−−−−−−−−−−−−−−
32 lazy val panel: RePanel = new RePanel {
33 override def paintComponent(g: Graphics2D) {
34 super.paintComponent(g)
35 g.fillRect(
36 square1.position.getValue.x.toInt − 8,
37 square2.position.getValue.y.toInt − 8,
38 16, 16)
39 g.fillRect(
40 square1.position.getValue.x.toInt − 8,
41 square2.position.getValue.y.toInt − 8,
42 16, 16)
43 }
44 }
45 lazy val top = new MainFrame {
46 preferredSize = new Dimension(800, 400)
47 contents = panel
48 }
49 } (b)

Figure 2: The Squares Application Implemented with RP (a) and the Observer Design Pattern in OO Programming (b).

While previous research has speculated on RP over-
performing OO programming w.r.t. program comprehension,
we take a neutral approach. Consequently, in Section 4, we
use 2-tailed statistical tests to analyze our results.

3.2 Work Method
To answer the above research questions, we design an
experiment that is composed of 10 comprehension tasks
and a short questionnaire. In each task, a subject is shown
a reactive application (written in RP or OO) and asked a
question about the application’s behavior.

In the rest of this subsection, we will present the reactive
programs we used in the experiment, the details of the
comprehension tasks and questionnaire, as well as how we
executed the study.

3.2.1 Reactive Programs Used
To analyze the difference between RP and OO, the experi-
ment focuses on 10 reactive programs we developed. Each
program is implemented in two versions. The RP version
is based on reactive programming, i.e., signals and, when
needed, events. The OO version adopts the Observer pattern

to implement reactivity. The applications belong to three
categories: synthetic, animated, and interactive applications.
Each category addresses a different comprehension problem.

Synthetic applications (applications 1-4) define functional
dependencies among values and propagate changes
when certain values are updated. These applications
look similar to Figure 1 except that the functional
dependencies are more complex.

Graphical animations (applications 5-7) display shapes on
a canvas and move them in regular patterns. Graphical
animation is a traditional domain for reactive program-
ming [1], [2].

Interactive applications (applications 8-10) require the user,
for example, to click buttons, insert text in a form, or
drag the mouse over a shape. These functionalities
are common in GUIs – another traditional domain for
reactive programming [3], [4].

We present an example of the animation category in Figure 2,
which draws two moving squares on a canvas. The RP
version of the application is presented in Figure 2a, the OO
version is presented in Figure 2b. Please note that the code
is reduced for presentation purposes. To give an intuition of
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Figure 3: The Squares Graphical Animation.

the execution, a screenshot is provided in Figure 3 that was
not available to the subjects. When running the application,
the upper and the lower square move horizontally from left
to right at constant and increasing speed, respectively.

In the RP version (Figure 2a), the position signal in
Line 5 models a time-changing value of type Point. The
x coordinate of the point depends on the time signal. The
y coordinate is fixed. Every time the time signal changes
(defined elsewhere), a new point is generated and assigned
to the content of the position signal. The position signal
for the second square (Line 13) works similarly, except that
the x coordinate of the point (Line 14) depends on both time
and a speed signal v defined on Line 10. Line 27 triggers a
repainting in the asynchronous Swing events loop every time
either position of square1 or the position of square2 changes.
Lines 32-47 setup the canvas and display the initial squares.

In the OO version (Figure 2b), the same functionalities are
implemented using the Observer pattern. In Line 6, a handler
is registered to the observable time (defined elsewhere).
The handler updates the position variable in Line 5. The
position variable is observable and the handler in Lines 27-
28 repaints the view every time position changes. The
definition of square2 follows the same principles; the GUI
setup in Lines 29-48 is the same as with RP.

As the reader may have noticed, some functionalities,
such as time, are defined elsewhere and accessed via import
(not shown). This is also the case for the reactivity machinery
(signals and observers). This choice helps to keep the
application code short and is consistent across the RP and
the OO version. In the experiment, subjects are shown fully
working code, including import statements.

3.2.2 Comprehension Tasks and Questionnaire

For each reactive program in the study, we ask a question
that requires comprehension of the application’s behavior.
Crucially, questions and alternative choices are formulated in
a way that finding the correct answer requires understanding
the (whole) reactive logic of the application. An example,
taken from the synthetic applications group, is to ask for
the sequence of values assumed by a variable that depends
on other values in the program once these other values are
updated. Answering the question requires to inspect the
application to detect functional dependencies among values,
i.e., which values are affected by a change and in which order.
An example from the interactive group comprises a quick
description of the application in the question (a canvas with
a box drawn on it) and asks which combination of actions
from the user produces a change of the color of the GUI.
The correct answer is “crossing two borders of the box while

dragging the mouse.” An example for the animations group
is shown in Figure 4 and refers to the application in Figure 2.

After subjects finished their comprehension tasks, they
were presented with a questionnaire that investigates what
subjects think of program comprehension with RP and OO.
This questionnaire helps us answer RQ4 and is composed
of five questions. One of these questions allows free-text
answers. We asked the subjects to express their opinion
about the differences between RP and OO programs. We
later use open-coding [15] to analyze the provided answers.
The other four questions elicit subjects’ opinions about more
specific aspects that – we hypothesize – may contribute to
a difference between OO and RP. For example, conciseness
or ease of following data flow. Answers to these questions
are in the form of a rating (strongly disagree - disagree -
neither agree nor disagree - agree - strongly agree). The exact
question texts will be provided in Section 5.2.

3.2.3 Study Execution
To practically run the experiment, we needed a tool that
allows users to complete the tasks in a Web browser that
supports fine-grained limitation of task duration and that
tracks timing information of the users. Some existing tools for
controlled experiments we are aware of are standalone appli-
cations (e.g., Biscuit [16] and Purity [17]), which considerably
increase the effort of running the experiment as they require
a preliminary installation on each machine. We discarded
using existing Web platforms for in-browser homework and
exams (e.g, WebLab [18]), because they lack fine-grained
time management, such as setting an upper bound to each
individual task and recording the task completion time –
which are important for our experiment (more on this later).
We ended up developing WebCompr, a Web application for
experiments on program comprehension that is tailored to
our specific requirements.

We use comprehension tasks as described in Section 3.2.2,
because this methodology provides objective results and
scales well (most controlled studies hardly include more
than 15 subjects [19], [20] – we have 127 subjects). Yet, the
experiment requires a controlled environment with on-site
execution and staff supervision to make sure that developers
perform the task without external help. Also, we wanted to
control the training of the subjects, which prevented us from
making the experiment publicly available on the Internet
and from publicly calling volunteers for participation.

We briefly discuss the alternatives we evaluated. In the
think aloud approach, subjects comment on the actions they
are performing [19], [20]. A subsequent interview can clarify
the motivations behind each action [21]. This approach,
however, does not allow to collect objective measures and
apply statistical tests. Other studies measure software com-
prehension by artificially introducing a bug in an application.
Then, they measure the time subjects need to fix a bug
or perform a modification task [20]. However, bug fixing
requires not only to understand the application, but also
to write code that solves the problem. Thus, measurements
would include code-writing skills as an additional factor of
the experiment, besides comprehension. This approach is
suitable if the factor is balanced for the groups such that it
does not influence the main factor we want to observe. In our
experiment, however, the code-writing skills of the subjects
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The following application draws two squares.
Which of the following sentences is true ?

a - The squares are moving at the same speed
b - The first square is moving at constant speed,

the second is moving at increasing speed
c - The squares have a fixed position
d - The first square is fixed, the second is moving

Figure 4: Example Question.

in the RP and in the OO style may be very diverse and there
would be no way to separate the influence of this factor from
the main factor we want to observe.

We decided to measure both time and correctness of the
results. Subjects were encouraged to provide an answer as
quickly as possible, but it was also clarified that time becomes
relevant only in case the answer is correct. The reason for
this design choice is to simulate a realistic coding session in
which developers inspect a large project and can spend only
a limited amount of time on each class, to keep the analysis
of the whole software feasible.

Previous work found that, without constraints, subjects
may spend the entire time of the experiment on a single
task [22]. To avoid this, we defined an upper bound to the
time subjects can spend on each task and fixed the available
time to 5 minutes for synthetic applications and to 10 minutes
for the animations and interactive applications. The latter
are slightly longer and require the inspection of more code.
The experiment was designed to require no more than 2
hours in total (preliminary tasks + experiment tasks) to avoid
having subjects loose their focus. In practice, our estimations
turned out to be rather conservative. None of the subjects
required the full amount of time and most subjects finished
the questionaire much earlier.

Controlled experiments can be conducted with between-
subjects design or within-subject design. In between-subjects
designs, two versions of the same application are proposed
to different subjects. In within-subjects designs, each subject
is given both versions [23]. Empirical studies in software
engineering usually prefer within-subjects designs to balance
the effect of the individual-skills factor, i.e., to reduce
the variability due to heterogeneous skills levels among
the subjects. On the other hand, within-subjects designs
introduce learning effects, because subjects can apply the
knowledge gained when solving a task with one factor to the
solution of the same task with the other factor – a problem
solved by between-subjects designs. It has been shown that,
if the learning effect is small enough, proper experiment
design still allows a within-subject approach [24], [25]. In our
case, however, this was not an option. The learning effect is
likely to dominate the effect we want to measure, because
it is extremely easy for subjects to remember previous
findings in the experiment – a known challenge in controlled
experiments on program comprehension [22]. Therefore, we
chose to design the experiment as a between-subjects. Subjects
are randomly assigned to the OO group or the RP group as
soon as they login in WebCompr for the experiment.

3.3 Study Subjects
The subjects of our study are students from a Software
Engineering course, held in the fourth year of study in

Computer Science. The study was run in two rounds: Round
1 in Fall 2014 (38 subjects) and Round 2 in Spring 2015 (89
subjects). Note that the questionnaire investigating RQ4 was
only available to subjects in Round 2.

All of our study subjects have similar academic back-
ground. They have been exposed to Scala programming for
at least the semester of the course. All subjects learned Java
since CS101 in their first semester and used Java as their
primary language in the rest of their studies. They learned
the Observer pattern since their Java first-year course on
programming. Subjects were taught RP for an amount of two
lectures (1.5h+1.5h) and were assigned homework (8h+8h
estimated) that required them to use RP to develop a reactive
application from a given specification.

We used WebCompr to collect information about the sub-
jects, such as their programming experience, and asked them
for a self-evaluation of their programming-skills level. Since
self-evaluation cannot be considered reliable [26], subjects
were also given 18 preliminary tasks, which we used to
measure their programming knowledge. We tested a variety
of different topics in several very short tasks – the maximum
amount of time available for each task was one minute.
Questions include concepts of OO programming, such as
inheritance and polymorphism, functional programming,
e.g., high-order functions and pattern matching, and also RP,
including events and signals. A secondary goal of these tasks
was to train students to correctly use WebCompr.

Subjects were given multiple answers and a Don’t know
option. The Don’t know option ensures that subjects do not
attempt to guess the correct answer in case they have no
experience with the object of the question. Overall, the
questions we asked also included advanced topics not
necessarily covered by the course. The assumption behind
this approach is that good programmers are likely to master
advanced features of the language. For example, a subject that
knows the behaviors of the zip function1 on lists is likely
to be a more advanced programmer than a subject that has
never heard about it.

3.4 Statistical Tests
For all statistical tests in this paper, we chose a p-value of
less then 0.05 to reject the respective null-hypothesis. We
use the Shapiro-Wilk test to check whether a sample comes
from a normally-distributed population. When the normality
hypothesis cannot be verified (which is the case for our
data), we need to use non-parametric statistical tests. We
use the Mann-Whitney U test to check whether two sets of
samples of ordinal variables of unknown distribution come
from the same population and Cliff’s delta to estimate the
effect size. We adopt the Peason X 2 test and Fisher’s Exact
Test, which is especially robust on small sample sizes, to
check whether two sets of samples of categorical values of
unknown distribution come from the same population and
Cramer’s V to estimate the effect size. To check correlation
between variables, we provide the values of Spearman’s
ρ Coefficient and Kendall’s τ Coefficient. In both cases, a
positive coefficient indicates a direct correlation, a negative

1. The zip function takes two lists and returns a list of pairs. Given
the input lists [li, i ∈ (0..n)] and [ri, i ∈ (0..n)] zip returns the list
[(li, ri), i ∈ (0..n)].
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Figure 7: Skills Score of RP Group and OO Group.

coefficient an inverse correlation. None of the tests requires
normality of the sample.

4 WHAT IS THE IMPACT OF RP ON PROGRAM COM-
PREHENSION?
In this section, we present the main contribution of our work:
the analysis of the statistical difference between the subjects
in the RP group and the subjects in the OO group. For the
analysis, we used the SPSS statistical tool [27].

We asked the subjects questions about their personal
background and experience as developers. Figure 5 provides
the subjects distribution based on years of programming
experience (PQ1: How long have you been programming?) Most
subjects have a 3 to 6 years experience, which in a number
of cases is likely to correspond to the amount of years they
have been enrolled in a CS program. The OO group and the
RP group exhibit similar profiles.

Figure 6 shows the distribution of the subjects in terms
of programming experience (PQ2: Do you work on any project
besides those you are assigned in classes?). Besides a small
group of subjects that work on open-source projects as
non-professional contributors, subjects are almost equally
distributed among the remaining categories, namely those

that work as professional developers on external projects,
those that also develop own projects in their spare time, and
those that work only on class assignments. Again, the OO
group and the RP group are similar.

The subjects’ results in the tasks on programming-skills
level allowed us to validate the hypothesis of equal distri-
bution among the RP group and the OO group. Validating
this assumption is required to make sure that the groups are
not unbalanced with respect to the programming-skills level.
We calculated a skills score for each individual subject that is
based on the correct answers achieved in all tasks that tested
programming-skills level. We implemented two strategies to
calculate this score: a simple strategy that treats all questions
the same, regardless of their complexity, as well as a more
complex strategy that takes the difficulty of the question
into consideration, i.e., the complexity of each question is
estimated by considering the number of correct answers for
a question over all subjects. The simple strategy rewards one
point as a partial score for each correct answer to a question
i, while the weighted strategy rewards 127/ci points, where
ci is the number of correct answers among all 127 subjects.
A wrong answer yields a partial score of 0 in both cases. The
overall skill score for an individual subject is the sum of all
partial scores of the subject.

Inspection of the data derived with the simple strat-
egy shows similarity between the groups (Figure 7). With
the simple strategy, a Mann-Whitney U test on the skills
score shows that equality of the groups cannot be rejected
(p = 0.13, Cliff’s delta -0.16). With the weighted strategy,
a Mann-Whitney U test on the skills score also leads to a
non-significant difference (p = 0.07 , Cliff’s delta -0.19). The
choice of one strategy over the other does not significantly
affect the results in the rest of the paper (most notably
Section 4.3). Hence, we decided to use the simple strategy
in the rest of the paper, because it reflects a straightforward
interpretation of the results.

4.1 Correctness
First, we analyze the data to provide an answer for RQ1 –
whether RP impacts the correctness of program comprehen-
sion. As the measure of correct understanding, we consider
the comprehension score, i.e., the cumulative number of correct
answers given by each student in all tasks.

We initially provide an overview of the results using
descriptive statistics. The mean score for the OO group and
the RP group are µ(score,OO) = 7.05 and µ(score,RP ) = 8.13,
respectively. Figure 8 shows the comprehension scores
obtained by the subjects in the RP group and in the OO
group. The plot seems to support the claim that the RP group
obtains a better result than the OO group. To check if the
difference between the scores of the RP group and the OO
group is significant, we formulate the following hypothesis
to be tested:
H0: The scores for the RP group and for the OO group are drawn
from the same population.

The Shapiro-Wilk test tells us that we cannot assume
normal distribution for the distribution of the score in either
group (pRP = 0.001 and pOO = 0.000). Therefore, we use the
Mann-Whitney U test to check our hypothesis. The result
allows us to reject H0 with high significance (p = 0.000),
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Group N Avg. Rank Rank Sum p-Value Cliff’s delta

RP 62 75.83 4701.5 0.000 -0.36
OO 65 52.72 3426.5

Table 1: Mann-Whitney U Test for Comprehension Scores.

which allows us to use the rank sum as an indicator for
which approach dominates the other. As shown in Table 1,
the rank sum for RP is significantly higher than the rank sum
for OO.

The correctness results for each application are shown in
Figure 9. The RP group outperforms the OO group in all but
tasks 8 and 9. To analyze the difference in the correctness
results for each application, we use the Pearson X 2 test and
Fisher’s exact test to disprove H0 for each application (see
Table 2). We find that RP performs significantly better than
OO for tasks 3-4-5-7 and that RP never performs significantly
worse than OO.

Finding 1: RP increases the correctness of program compre-
hension.

It is interesting to further inspect the correctness results
to gain some insights about the applications where the RP
group did not outperform the OO group. The most striking
cases are Task 8 and Task 9, where the average for the OO
group is higher than the average for the RP group – even if
this difference is not statistically significant.

An insight is that Task 8 is the only task where the GUI
logic is mixed with the application logic. In the RP style,
this approach requires some comprehension of how an OO
GUI library interacts with RP code. The basic idea is that
when the elements of the GUI are instantiated, they receive
as input signals instead of traditional values. For example,
the following code creates a Swing button.

1 val rightButton: ReButton = new ReButton(
2 text = Signal { rightClicks() + " times clicked" },
3 background = Color.GREEN)

Crucially, the text displayed on the button changes over
time, based on the signal expression defined in Line 3. In this
example, the GUI elements are directly created to depend on
reactive abstractions (i.e., the application logic). The reader
can compare this snippet with the example in Figure 2b
where the application logic is completely separated from the
GUI code. It is possible that the poor performance of the
RP group is caused by the lack of knowledge about how
RP interoperates with an OO GUI library, rather than by the
comprehension of the application logic itself.

In the case of Task 9, the application displays a vertical bar
that slides from left to right and is visible only for some time
after the mouse clicks. The visibility of the bar is regulated by
the e.switchOnce(s1,s2) conversion function, which initially
returns the signal s1, but always returns the signal s2 after
any occurrence of the event e. A possible explanation of the
poor result of the RP group is that the switchOnce function
is not known to some subjects, making it hard to deduce the
logic of the application. In contrast, the equivalent OO code
does not require any specific knowledge.

Figure 8: Comprehension Score of RP Group and OO Group.

Figure 9: Comprehension Score for Individual Tasks.

4.2 Timing

In this section, we investigate the result of the experiment
concerning RQ2 – whether comprehension with RP requires
more or less time than with OO. This research question is
closely related to the results obtained for RQ1. Based on
Finding 1, we already know that, in terms of correctness, the
RP group does perform significantly better than the OO group.
However, timing remains an open issue. One may wonder if
the previous result can be biased by a significant difference
in time to understand an RP program or an OO program.
RP can lead to more correct results on average, but may be
much more time consuming for developers.

Descriptive statistics suggest that the RP group requires
less time to complete each task. Figure 10 shows a box plot
comparing the time required by the RP group and the time
required by the OO group for each task. The maximum
duration differs between tasks (cf. Section 3). To make the
measured times comparable, we map the maximum duration
for each task to 1000 units and normalize the measured times
on this scale. To inspect significance with statistical tests, we
formulate the following null hypothesis:

H0: The time required to complete the RP and the OO tasks are
drawn from the same population.

In contrast to the correctness case, in which binary data
required a cumulative score over all the tasks, time data is
continuous and we can analyze each task separately. Like
before, the underlying distribution is unknown and we
perform a Mann-Whitney U test. The results in Table 3 show
the available data points for each group (N), the average
rank, the rank sum, and the p-value for the test. For the
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Figure 10: Time Spent on Individual Tasks in RP Group and OO Group.

Group Correct % Pearson X 2 Fisher’s Test Cramer’s V

Task 1
RP 55 88.70

0.102 0.102 0.17
OO 50 76.90

Task 2
RP 53 85.50

0.361 0.361 0.09
OO 51 78.50

Task 3
RP 47 75.80

*0.006 *0.006 0.26
OO 33 50.80

Task 4
RP 60 98.80

*0.002 *0.002 0.28
OO 51 78.50

Task 5
RP 58 93.50

*0.004 *0.004 0.27
OO 48 73.80

Task 6
RP 50 80.60

0.403 0.403 0.08
OO 48 73.80

Task 7
RP 58 93.50

*0.012 *0.012 0.23
OO 50 76.90

Task 8
RP 60 96.80

0.680 0.680 0.07
OO 61 93.80

Task 9
RP 40 64.50

0.245 0.245 0.12
OO 49 75.40

Task 10
RP 23 37.10

0.251 0.251 0.12
OO 17 26.20

Table 2: Person X 2 Test and Fisher’s Exact Test for Correct-
ness. Starred Differences are Significant.

tasks 1-2-3-4-6-7, H0 can be rejected with high significance.
In all those cases, the rank sum indicates that times for the
OO group are higher than times for the RP group (Table 3,
column “Ranks sum”), i.e., the RP group is faster. For the tasks
5-8-9-10, H0 cannot be rejected.

The above finding might only hold for the time it takes
a programmer to give the answer she believes is correct.
Therefore, we test our hypothesis also on the subset of times
that subjects needed to provide the correct answer. The results
of the Mann-Whitney U test are in Table 4. For tasks 1-2-
3-4-6-7 we can reject H0 with significance. The rank sum
indicates that RP group is faster than the OO group. For the
other tasks, H0 cannot be rejected. Thus, considering only
correct answers still leads to the same conclusion.

Finding 2: Comprehending programs in the RP style does
not require more time than comprehending their OO
equivalent.

4.3 Programming-skills Level
In this section, we inspect the experimental data to answer
RQ3 – whether comprehending RP applications requires
a more advanced programming-skills level. To this end,
we correlate the programming-skills level we measured for

Group N Avg. Rank Rank Sum p-Value Cliff’s delta

Task 1
RP 61 42.98 2621.5

*0.000 -0.63
OO 65 82.76 5379.5

Task 2
RP 62 39.19 2430

*0.000 -0.76
OO 64 87.05 5571

Task 3
RP 61 46.12 2813.5

*0.000 -0.51
OO 62 77.62 4812.5

Task 4
RP 62 50.35 3121.5

*0.000 -0.41
OO 64 76.24 4879.5

Task 5
RP 62 58.07 3600.5

0.076 -0.18
OO 65 69.65 4527.5

Task 6
RP 62 54.85 3401

*0.006 -0.28
OO 65 72.72 4727

Task 7
RP 62 50.25 3115.5

*0.000 -0.42
OO 65 77.12 5012.5

Task 8
RP 61 61.56 3755

0.565 -0.06
OO 65 65.32 4246

Task 9
RP 62 63.31 3925

0.837 -0.02
OO 65 64.66 4203

Task 10
RP 62 57.77 3581.5

0.083 -0.18
OO 63 69.05 4419.5

Table 3: Mann-Whitney U Test for Answer Times. Starred
Differences are Significant.

each subject with the correctness results in the experiment.
Figure 11 shows a scatter plot of the skills score and the
comprehension score in the tasks for both the RP group
and the OO group. There are less data points than subjects,
because some data points are identical for different subjects.
For those cases, the size of the dots reflects the number of
subjects that fall in this category. The figure suggests that in
the OO group, skill correlates with correctness, i.e., subjects
with low programming-skills level perform poorly on the
tasks, while subjects with advanced programming-skills level
perform better. In contrast, subjects in the RP group reach
high scores, independently of their programming-skills level.
In other terms, the figure suggests an absence of correlation
for the RP group and a positive correlation for the OO group.
This intuition is further investigated in the following. We
estimate the significance of the correlation between subjects’
score and skills level by testing the following hypotheses:
H0: There is no correlation between the score of the subjects in the
RP (respectively, OO) group in the experiment and their measured
programming-skills level.

We use Kendall’s τ coefficient and Spearman’s ρ coeffi-
cient to test for a correlation between skills level and score.
Table 5 shows the correlation coefficient r and the p-value
for each case. For the RP group, we detected no significant
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Group N Avg. Rank Rank Sum p-Value Cliff’s delta

Task 1
RP 54 34.11 1842

*0.000 -0.74
OO 50 72.36 3618

Task 2
RP 53 33.08 1753.5

*0.000 -0.76
OO 50 72.05 3602.5

Task 3
RP 46 30.11 1385

*0.000 -0.56
OO 30 51.37 1541

Task 4
RP 60 45.5 2730

*0.000 -0.40
OO 50 67.5 3375

Task 5
RP 58 48.77 2828.5

0.082 -0.18
OO 48 59.22 2842.5

Task 6
RP 50 43.34 2167

*0.028 -0.26
OO 48 55.92 2684

Task 7
RP 58 44.7 2592.5

*0.000 -0.39
OO 50 65.87 3293.5

Task 8
RP 59 57.46 3390

0.348 -0.10
OO 61 63.44 3870

Task 9
RP 40 48.19 1927.5

0.296 -0.13
OO 49 42.4 2077.5

Task 10
RP 23 17.26 397

0.073 -0.34
OO 16 23.94 383

Table 4: Mann-Whitney U Test for Correct-Answers Times.
Starred Differences are Significant.
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Figure 11: Skills Score vs. Comprehension Score.

correlation, i.e., H0 cannot be rejected. For the OO group,
however, both tests are statistically significant (p = 0.003,
p = 0.002) and H0 can be rejected. We conclude that in
the OO group, there is evidence of a positive correlation
(r = 0.280, r = 0.383) between subjects’ scores and skills
level.

Finding 3: In contrast to OO, where score results are
correlated to programming-skills level, with RP, a higher
programming-skills level is not needed to understand
reactive applications. This suggests that, with RP, reac-
tive applications are easier to understand for non-expert
programmers.

Note that the correlations above and their significance
do no change when considering the simple strategy or the
weighted strategy for evaluating subjects skills levels.

Comprehension-Skills Correlation

RP Group OO Group

Kendall coefficient r 0.130 0.280*

p-value 0.190 0.003*

Spearman coefficient r 0.182 0.383*

p-value 0.157 0.002*

Table 5: Correlation of Comprehension Score and Skills Score
with Kendall’s τ and Spearman’s ρ. Starred Correlations are
Significant.

5 RP VS OO: PERCEIVED DIFFERENCES

The results of our empirical study show that RP outperforms
OO in terms of program comprehension and, hence, should
encourage researchers to further explore RP. However, the
evidence presented in Section 4 does not explain the root
causes of the difference between RP and OO with respect
to program comprehension. In this section, we attempt to
provide an explanation of our findings – hence answer RQ4 –
supported by our experience with RP and the additional
questionnaire data collected in Round 2 of our study.

5.1 Informal Observations

In Round 1, we collected informal feedback from the ex-
periment subjects in a non-systematic fashion by talking to
them at the end of the experiment. Using different wording,
subjects reported that, with OO versions, one has to follow
the flow of the whole application to infer the reactive behavior.
On the other hand, with RP, the flow associated to the reactive
behavior is explicit (in practice, a signal is defined together
with its expression). Based on this feedback and on our
experience, we believe that the main effect we observed
comes from RP making it easier to reason about data flow,
i.e., points (i) and (ii) from Section 2. This conjecture is
supported by previous findings showing that data and
control flow play a fundamental role in the way programmers
develop a mental representation of programs [28] and that
developers understand programs exactly by building such
mental models [29].

Data flow determines whether a variable depends on
another, a fundamental aspect of comprehending reactive
applications. Detecting dependencies among variables is
also a reachability question, because it requires checking
whether a change to a variable propagates to the other.
Previous research [30] noticed that reachability questions
are (i) extremely common for developers, (ii) hard to answer
correctly, and (iii) time-consuming. These results support the
conjecture that RP improves correctness in the comprehen-
sion of software by making data flow easier to understand.

5.2 Questionnaire

The subjects involved in Round 2 answered a questionnaire
to explore the perception that developers have of program
comprehension with RP and OO. The questionnaire allows
us to perform both quantitative and qualitative analysis of
the data.
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Figure 12: Answers of the Subjects to the Four Questions

5.2.1 Quantitative Analysis
Our quantitative analysis is based on the four rating ques-
tions presented to subjects in the questionnaire. The answers
to these four questions are summarized in Figure 12.

The first of these questions directly asks the subjects for
their opinion about the main research question of this study:

Q1: A program implemented using Reactive Programming is easier
to comprehend than an equivalent program based on the Observer
Pattern.
The answers to Q1 show that, of the subjects who answered
the question, 65 (73%) strongly agree or agree that RP is
easier to comprehend compared to an equivalent program
that implements the Observer pattern. Eleven subjects (12%)
disagree or strongly disagree with this statement, while
13 subjects (15%) are neutral (neither agree nor disagree).
Recall that our subjects received only 3 hours of RP training
(Section 3.3).

Observation 1: Even developers with minimal RP experience
believe that RP is easier to comprehend.

The next question collects evidence for the hypothesis
that data and control flow are easier to follow in RP – a
hypothesis suggested by the informal feedback collected
after Round 1.

Q2: In Reactive Programming, compared to the Observer design
pattern, data and control flow are easier to follow.
Answers to Q2 show that 69 subjects (77%) strongly agree
or agree that following data and control flow in RP is
easier than in an Observer implementation, which confirms
the conjecture formulated after Round 1. Only 4 subjects
(4%) disagree and only a single subject strongly disagrees.
15 subjects (17%) neither agree nor disagree.

Observation 2: Developers believe that following data and
control flow is easier in RP.

The next two questions attempt to more directly inves-
tigate the reason for better comprehension in RP. The first
question addresses the matter of conciseness of RP programs.
In previous work, we showed that RP programs are shorter
than their OO counterpart [5]. We hypothesize that this
aspect affects program comprehension. Since conciseness
does not necessarily make comprehension easier, we asked
the subjects to evaluate how a specific aspect of RP languages
impacts comprehension.

Q3: In Reactive Programming, compared to the Observer design
pattern, programs are easier to understand, because they are shorter.
The answers to Q3 show that 62 subjects (70%) believe that
conciseness of RP has an impact on program comprehension.

Ten subjects (11%) disagree or strongly disagree with the
statement, 17 subjects (19%) neither agree nor disagree.

Observation 3: Developers believe that conciseness makes
comprehension of RP easier.

The next question investigates the role of conversion
functions. RP languages provide a rich set of operators that
combine reactive values and convert between signals and
events [4]. For example, in Figure 2, the changed operator in
Line 14 converts from a signal to an event that fires when the
signal changes its value. RP-language designers hypothesize
that these operators express programmers’ intentions and
make code more comprehensible [10]. Note that conversion
functions have been explained to subjects in the class so that
“conversion function” is known terminology for them.

Q4: In Reactive Programming, compared to the Observer design
pattern, programs are easier to understand, because conversion
functions express programmers’ intentions more directly.
The answers to Q4 show that 77 subjects (77%) strongly
agree or agree that conversion functions have a positive
impact on comprehension of RP programs. Only 7 subjects
(8%) disagree or strongly disagree to this, while 13 subjects
(15%) neither agree nor disagree. A comparison with Q3
indicates that code length has an important role in the
comprehension of RP programs, but not as important as
conversion functions.

Observation 4: Developers believe that conversion functions
make comprehension of RP easier.

5.2.2 Qualitative Analysis
To further understand what factors impact program compre-
hension and what characteristics of RP or OO affect program
comprehension, we used an open question, QOp, to allow
subjects to freely express their opinions. Note that in the
questionnaire, QOp is actually located after Q1 to avoid that
the answer is influenced by the hypotheses presented in Q2,
Q3, and Q4.

QOp: Considering your choice in question Q1, how would you
motivate your answer?

We now discuss the answers we received for QOp, first in
terms of arguments for RP and then in terms of arguments
against RP. For each argument we find, we provide some of
the subjects’ quotes that discuss the problem. For each quote,
we also provide the subject’s answer to Q1.

Points in Favor of RP
To identify points in favor of RP, we performed an open-
coding session on the answers to QOp that we received
from the 65 subjects (73%) that agreed or strongly agreed
to Q1. As a result, we found seven categories of reasons for
finding RP more comprehensible. The reported percentages
in the following section are computed with respect to the
65 answers that are considered here.

Reduced Boilerplate Code. A total of 28 subjects (43%) either
explicitly mentioned RP having less boilerplate code or used
words such as “less code-overhead”. The following subject’s
comment provides some intuition of what subjects mean
when using the term boilerplate code:
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“Programmers can focus on the implementation rather
on additional boilerplate code needed to get the reactive
behavior of the observer pattern." (Strongly Agree, Id
89)

Better Readability. Twelve subjects (18%) indicated that they
found programs written in RP easier to understand, because
they provided better readability. It is interesting to note that
most of these subjects also mentioned reduced boilerplate
code, either as a separate point in their answer or as a reason
to why they found the programs easier to read. Subject 56
makes this explicit by saying

“RP is easier to understand because it deals with concise
code. It deals with events so code is more clear to
understand.” (Agree, Id 56)

Automatic Consistency of Reactive Values. Ten subjects
(15%) mentioned that they liked the fact that RP auto-
matically tracks dependencies among signals, as well as
automatically updates their values. Subjects liked such
support since it ensured the consistency of the reactive values,
without interference from the programmer. For example, one
subject comments that she finds RP easier to understand,
because,

“the annoying notify mechanism is completely dropped
[... and] the Signals are automatically updated.” (Agree,
Id 25)

Shorter Code. Seven subjects (11%) mentioned shorter code
as one of the advantages of RP. This aspect clearly relates
to reduced boilerplate code mentioned previously. However,
shorter code only refers to the amount of code required
to express a functionality, while boilerplate code refers to
repeated code that clutters the application, obfuscating its
behaviour.

“Instead of many cluttered classes in the Observer
Pattern, Reactive Programming enables a short, readable
syntax." (Strongly Agree, Id 38)

Declarative Nature. Five subjects (8%) describe RP’s declar-
ative nature as as one of the reasons that makes the code
easier to understand. Three of these explicitly mention the
term declarative, while the other two explain characteristics
of declarative programming that helped them understand
the code, as the following quote illustrates:

“I think it is easier to reconstruct the path of signals and
events, than to follow the notifications to the different
observers and to evaluate the side-effects of the methods
of the observers.” (Agree, Id 23)

Ease of Composition. Four subjects (6%) list the ease of
composition of different events in RP as one of the factors
that leads to better comprehension. This suggests that using
a shorter, more intuitive syntax for composing events helps
developers understand the logic involved more easily.

“[RP is] more composable through declarative events (||,
&& , ...)” (Strongly agree, Id 87)

For example, in REScala, an event e3 that occurs when-
ever one of the source events e1 and e2 occur can be
defined as e3 = e1 || e2. To express the same functionality
with the Observer design pattern, instead, one should call
addObserver on each source, binding the same observer.

While the functionality is the same, the || operator makes
the programmer’s intention explicit.

Separation of Concerns. Three subjects (5%) mention sep-
aration of concerns as one of the advantages of RP. With
RP, the change propagation concern is separated from the
application logic. In contrast, when using the Observer
design pattern, change propagation is tangled with the rest
of the application.

“Observer pattern does not provide separation of con-
cerns.” (Agree, Id 52)

Points Against RP
While the above points provide arguments for why reactive
applications in RP are more comprehensible than OO, we are
also interested in the counter-arguments provided by some
subjects. In the following, we look only at the opinions of the
twenty-four subjects who answered neither agree nor disagree,
disagree, or strongly disagree to Q1. This is crucial to guide
future research on reactive applications.

Learning Curve. The results presented in Section 4 suggest
that the learning curve required to increase software com-
prehension is quite small. Experience with the RP paradigm
compared to the OO paradigm is a recurring argument in
the answers of the subjects that do not fully agree with the
statement in Q1 (7 subjects, 29%). In some cases, subjects
mention that they consider RP superior, but harder to master.

“[...] if the person achieves the considerable skills to un-
derstand the programming constructs based on RP, then
it would be the quickest & fastest way of programming."
(Neither agree nor disagree, Id 61)

“We need the RP style of thinking and get used to it then
only it is easier.” (Neither agree nor disagree, Id 123)

The subjects in the experiment have significant background
in OO programming – mostly in Java. Subject 42 notes that
previous experience in another programming paradigm can
influence the learning curve of RP.

“Readability is good in [the] normal Observer Pattern,
Scala or REScala is cumbersome and the code is not
easily understood. [...] I have worked for 5 years on Java
and I am not able to adapt to the new programming
paradigm [...].” (Disagree, Id 42)

This subject quote also seems to suggest that the readability
problems are related to functional programming in general,
i.e., to general Scala features rather than REScala specific
features.

Level of Abstraction. An aspect that may negatively affect
the comprehension of RP programs is the higher level of
abstraction the RP paradigm promotes (2 subjects, 8%). One
of the effects of abstraction is that the details about change
propagation are not directly visible to the developer. In the
case of RP, programmers need to trust the programming
runtime for propagation concerns.

“I can’t follow the Codeflow in RP. I want to know, what
method is called when.” (Strongly disagree, Id 83)

Instead, with the Observer design pattern, developers can
directly see the method calls that propagate the change. This
aspect is expressed in the following comment:
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“Using the Observer pattern is really clear, although it
introduces a bit of boilerplate code. When you get around
how REScala works, you don’t think about the details
anymore and it becomes easier. But [you have] to get to
this point.” (Neither agree nor disagree, Id 43)

Again, a crucial aspect of the learning curve of RP seems to
be mastering abstraction.

Relation with Functional Programming. RP has a functional
flavor in that it is based on functional composition of
signals, which abstract over state. As such, RP inherits
advantages (e.g., conciseness) and drawbacks of functional
programming (2 subjects, 8%). In addition, subjects with Java
background perceive functional programming as harder than
OO programming.

“The observer pattern is well established and everybody
knows about it and how to use it. Reactive programming
is less known, but introduces less boilerplate and shorter
code. Given that RP code is not always easy to under-
stand (the same holds for functional programming also)
without extensive comments, they are both equally easy
to understand.” (Neither agree nor disagree, Id 84)

A well-known issue in functional programming is the
proliferation of combinators that address the issues that
arise in the development process. This issue is mentioned in
the answer of subject 121 who warns against the difficulty of
mastering too many combinators. As we already discussed,
our results for the correctness of Task 9, where RP does
not outperform OO, may be explained by the presence of a
complex combinator (Section 4.1).

“It depends on [the] abstraction of the RP. E.g. If there are
functions that encapsulate more than one functionality,
it may become complex to understand the result of the
function. There could be functions that do the nearly the
same [...] By adding more of functions like these it may
become hard to keep an overview. [...]” (Agree, Id 121)

Currently, REScala supports 20 combinators. Yet, this prob-
lem is even more exemplified by the Rx reactive framework,
which lists more than 70 operators (almost 400, if we consider
their variants) [31]. While many operators are mostly highly-
specialized versions of other, more-general operators, we
believe that the breadth of such an API can pose a serious
challenge for a programmer that is interested in adopting RP.
We believe that this aspect should drive the design of future
RP languages, suggesting to keep the reactive API small, by
favoring composablility over specialization of operators.

5.2.3 Relating Quantitative and Qualitative Analysis
It is interesting to compare the qualitative data we obtained
from the free-text answers to the Observations 2–4 from the
quantitative data.

The points for RP in the automatic consistency of re-
active values and separation of concerns categories support
Observation 2. These comments suggest that participants
find it easier to understand data and control flow in RP
or at least appreciate the fact that some of this logic is
automatically handled for them. On the other hand, in the
points against RP, one participant (Id 83) stated that she
dislikes the hidden change propagation, because it forces her
to trust the program without seeing an explicit, trackable flow.

While only two participants had such concerns, it is worth
investigating whether they can be addressed, for example, by
respective debugging concepts. We started addressing these
issues in a recent line of work on dedicated debugging for
reactive applications [32].

Observation 3 seems to be widely supported by the
qualitative data we gathered. Thirty-five out of the 65 subjects
(54%) who agreed or strongly agreed to Q1 spontaneously
mention reduced boilerplate or shorter code as a major
motivation for better comprehension of RP programs.

Interestingly, while Observation 4 is supported by 77
subjects (77%), who strongly agree that conversion functions
make comprehension of RP easier, only one participant men-
tioned conversion functions, among other points, in the free-
text comments. Given that QOp is presented to participants
before Q4, it might be that conversion functions are simply
not what participants think about first when considering
the comprehension of RP programs, but something they
acknowledge as important, if prompted. This is in contrast
to, for example, spontaneously stating conciseness as a main
advantage of RP programs.

6 OUTLOOK

The results in the study suggest interesting directions for
future work in different areas.

Interpretation of the results. This study provides a first
attempt to assess the impact of the RP paradigm on software
comprehension. Further systematic investigation of this
aspect should proceed along different lines. More evidence
should be collected on how developers reason about RP
programs. Exploratory studies, e.g., using either the think-
aloud approach or interviews [20], [33], could help to
understand the causes of the issues developers face with RP.
Such studies could also reveal which aspects of RP languages’
design are responsible for the effects observed in the study.
We hypothesize that syntactic binding of signals inside signal
expressions play a crucial role, as it makes dependencies
among reactive values explicit and easy to detect by inspect-
ing only the portion of code with the signal’s definition.
Recently, an interesting line of work has applied eye-tracking
techniques to understand how developers inspect, debug,
and comprehend source code [34], [35], [36], [37], [38]. This
kind of analysis seems to be promising to investigate with
high precision the effect of RP abstractions on programmer
activity for code comprehension.

Previous work studied the mental processes that are
activated during programming tasks to infer cognitive
models for the comprehension process. In the top-down
model by Soloway and Ehrlich [39], developers who already
possess domain knowledge (knowledge base) understand an
application by mapping programming structures to such
existing (high-level) knowledge. For example, if a program-
mer is an expert on operating systems, she expects the
presence of a scheduling algorithm and she looks for the
queue that implements it. In the program model proposed by
Pennington [29], a programmer understands an application
by building a representation of what the application is doing.
Such a representation consists of a control-flow abstraction.
For example, the programmer deduces that a code section
implements a linked list. In the bottom-up model (or situation
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model) by Letovsky [40], the program model is used to create
data-flow and functional abstractions. For example, a linked
list can be recognised as a queue for process scheduling.

An open question is how the difference between OO and
RP can be interpreted in the light of existing cognitive models.
Mayrhauser and Vans [41] show that the above models are
active at the same time, but that the program model and the
bottom-up model are predominant for small applications –
which is the case in our experiment. An argument in favor
of the activation of the top-down model in our experiment
is that subjects have domain knowledge about GUIs and
animations – they have seen examples of these applications
during the lecture. Also, their knowledge base is enhanced
by the context provided in each question (e.g., "The following
application draws two squares"). Despite these arguments,
we do not believe that the top-down models plays a primary
role in our experiment. The questions in the tasks focus on
details that can be inferred only with a fine-grained inspec-
tion of the code (e.g., "The first square is moving at constant
speed, the second is moving at increasing speed"). Hence,
we hypothesize that the program model and the bottom-up
model are the ones that are predominantly involved in the
comprehension process triggered by our experiment. In the
light of these considerations, a possible interpretation of our
results is that RP enhances comprehension because (1) it
significantly reduces the effort to understand control flow
(i.e., the goal of the program process) and (2) it makes data
flow explicit, simplifying the bottom-up process. However,
investigating in-depth how cognitive models are affected by
the difference between RP and OO is beyond the scope of
this paper and requires further study.

Language Design. A language design that supports RP
abstractions has been embraced by widespread programming
languages, such as Scala, with the Akka Scala framework
introducing support for event streams, and Java 8, which
provides the Stream interface for collections. Our findings
suggest that this is the right direction. Yet, keeping the
surface of the reactive API small is an important issue.
We believe that future RP-language designs should focus
on identifying a small set of fundamental abstractions
and combinators thereof and express the others as their
composition. This effort is essential to keep comprehension
of RP code accessible also for non-experts (Section 5.2).

An open issue in RP-languages design is whether both
signals and events are needed. Research RP languages, such
as FrTime [3], Flapjax [4], Scala.react [6], and REScala [5],
foster a design with both signals and events. On the other
hand, more practical languages, such as the .NET reactive
extensions and Bacon.js, adopt a simpler model that only
supports event streams. We believe that future experiments
should explicitly address the concern of wether the presence
of both signals and events make it harder to master an RP
language and study the effect on comprehension of a design
that supports both events and signals compared to a design
with events only.

Tool support. Understanding how programmers work is
fundamental to provide better tool support, especially in
IDEs [42], a research area which is vastly unexplored for RP.
Using the dependency graph as the reference model to reason
about reactive programs is a promising research direction.

Students involved in projects on RP at our university
independently developed small applications to visualize
the dependency graph. These systems adopt various tech-
nologies (e.g., Graphviz, Flash) and offer different levels of
refinement, but all of them focus on displaying the evolution
of the graph over time. Also, practitioners developed similar
representations [43], [44], [45]. Conceptually, the structure of
a program is similar in RP and OO as in both cases it can
be effectively represented as a graph. Interestingly, one of
our subjects followed the same line of argumentation in her
answer to question QOp:

If you use the Observer Pattern, you have to keep track
of the observers to see who gets notified and when. Using
reactive programming you have to keep track of how the
signals depend on each other. In a complex program, the
best way [...] to display this is to use graphs. So neither
version has an advantage, as the graphs will look more
or less the same. (Neither agree or disagree, Id 22)

This observation can be especially interesting for imple-
menting tools (e.g., debuggers) that support RP and OO
abstractions in the same application. Visualizing the depen-
dency graph for debugging purposes has been explored
by the Event Flow Debugger – the debugging tool of
Microsoft StreamInsight CEP system [46] – and by Gedik et
al. [47] for the Spade IBM stream-processing language. We
also investigated dedicated debugging for reactive applica-
tions [32]. However, this approach has never been attempted
for treating RP and OO abstractions uniformly.

7 THREATS TO VALIDITY

In this section, we discuss factors that may affect the validity
of our results and the countermeasures we adopted to reduce
such risks.

Construct Validity. Threats to construct validity refer to the
extent to which the experiment does actually measure what
the theory says it does.

Our approach to measure program comprehension re-
quires careful formulation of questions and candidate an-
swers. Questions that are too specific may not require a
significant comprehension of the program. For example, the
correct answer “3 clicks” for the question “How many clicks
are needed to activate functionality X” can be found (with
low confidence, admittedly) just by spotting a line such
as if(numberOfClicks == 3)[...] in the program code. We
tackled this problem in two ways. First, we formulated ques-
tions and candidate answers in a way that requires a broad
comprehension of the reactive behavior of the program. The
questions we formulated are basically equivalent to “what
does this reactive program do?”, as discussed in Section 3 and
shown in Figure 3. We ensured that subjects could not simply
spot the correct answer by “pattern matching” over the code.
Second, we performed renamings to change too-meaningful
names into more neutral ones. For example, in the application
in Figure 2a, the variables position in Line 5 and position in
Line 13 were originally named constantSpeedPosition and
increasingSpeedPosition, which would have immediately
provided an answer to the question in Figure 4.

Another issue concerns the use of the Web-based Web-
Compr application to complete the tasks. Such a platform
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could be unintuitive for some subjects, which may potentially
affect the results, especially timing. To mitigate this effect,
we presented the interface of WebCompr in detail before
the experiment started and showed example screenshots
to give the subjects a clear feeling of what to expect. Also,
the experiment started with preliminary questions about
the background of the subjects, for them to become familiar
with the platform while answering these questions that are
unrelated to program comprehension.

Finally, a possible threat is that showing code in Web-
Compr might not reflect the comprehension process that
developers follow in practice. For example, many developers
use debuggers as a means to understand how an application
behaves. Similar considerations apply to other functionalities
supported by IDEs, but unavailable in WebCompr, e.g., API-
doc popups, the "show definition" function for variables,
a navigation view, or advanced search tools. Allowing
programmers to inspect code with a fully-fledged IDE,
however, would introduce a major threat to internal validity
– discussed hereafter.

Internal Validity. Threats to internal validity relate to factors
– other than independent variables under control – that can
affect dependent variables, i.e., influence the results.

A first concern is about a possible difference between the
skills of the OO group and the RP group. As discussed in
Section 4 there is no significant difference, even though the p-
values are relatively small (p = 0.13 or p = 0.07, depending
on the strategy). It should be noted that the effect size is
small too (Cliff’s delta is −0.16 or −0.19, respectively).

While IDEs play a relevant role in programmer activity,
the influence of the IDE on different programming paradigms
is unclear and should be the subject of a different study. Other
studies facing the same problem [24], [48], [49] adopted
a minimal programming environment to minimize the
effect of the IDE. This problem is especially relevant for
program comprehension, since advanced search tools and
outlines of the program structure may significantly speed up
comprehension of the application behavior. It must also be
considered that there is currently no dedicated tool support
for RP, which would unfairly disadvantage this paradigm
in a comparison involving an IDE. Our approach based on
the WebCompr platform has the advantage that the impact
of tool support is not a factor. The text search of the browser
and syntax highlighting are the only help subjects receive.

External Validity. Threats to external validity relate to the
generalizability of our findings.

A first issue concerns the training subjects received. The
comparison of two programming techniques is definitely
influenced by the skills level of the subjects in each. In
our case, training on RP was minimal (cf. Section 3). In
summary, the experiment is not biased towards RP, yet, it
leads to observable differences in favor of RP – suggesting
that the effect may be even higher if subjects had comparable
experience in OO and RP. For our study, we chose Scala
as a representative of OO languages and REScala as a
representative of RP languages. It is possible that our findings
are specific to those languages and do not generalize to other
languages. We chose Scala, because all subjects were exposed
to the language throughout the course. We chose REScala,
because this way the RP extensions are the only difference

between both languages. Moreover, we conduct our study
in an advanced Software Engineering course, which makes
us confident that students understand the abstract concepts
behind the specific syntax.

Another issue concerns the types and sizes of the appli-
cations we adopted in the experiment. Regarding the type,
the applications we selected are representative for typical
domains of RP. We argue that these are also representative
for a wide class of reactive applications. Also, synthetic
applications capture the issues of reactivity in general and are
not bound to a specific domain. Regarding the size, small-size
applications are necessary to keep the experiment feasible.
However, for what reactivity concerns, we tried to reflect the
structure of bigger applications. For example, in Figure 2,
the signal in Line 10 could be removed, collapsing its signal
expression with the one in Line 13. Similar considerations
apply for the OO counterpart. The correctness of such a
design is disputable, yet, it is functionally equivalent to the
presented solution. More importantly, however, intermediate
observables are likely to appear in larger applications, be-
cause programmers are more likely to use these intermediate
values in multiple places and, therefore, introduce them in
the first place. To make sure that both the RP version and
the OO version of the applications are representative of the
respective style, we asked the members of our research group
to review our code and modified it according to the feedback
we obtained.

The subjects of our experiment are students. Although
using students for empirical studies is common practice, this
can affect the result of the experiment [50]. Professional
developers may have more expertise in a programming
technique after applying it on a daily basis for years. Yet,
recent work observed no significant difference between
professional developers and students [51]. As a final con-
sideration regarding subjects’ skills, Kleinschmager and
Hanenberg, in a preliminary study [26], presented a negative
result on using pretests as a valid criteria for measuring
programming-skills level. However, we use 18 preliminary
tasks to increase statistical validity, while Kleinschmager and
Hanenberg use a single task to predict the outcome of their
other 14 tasks, which significantly increases our confidence
on the methodology we adopt.

Finally, while this work aims at evaluating the effect of
a programming paradigm (RP), the study is limited to one
specific language (REScala) that implements this paradigm.
Each language has semantic features and specific syntax that
may significantly influence program comprehension. In the
design space of RP languages, REScala is more similar to
research languages, such as FrTime, Scala.react, and Flapjax,
than to languages popular among practitioners, such as Rx
and BaconJS. We now analyse the main differences between
REScala and Rx – chosen because of its popularity – and
discuss how they may impact the results of our study.

The most obvious difference between Rx and REScala
is that REScala distinguishes between signals and events,
while Rx supports only events. This leads to a different
way of thinking about the application logic as well as
syntactic differences. For example, to indicate a depen-
dency in REScala, a signal expression like s2 = Signal{
s1.toString } would be used. In contrast, a statement like
e2 = e1.map(_.toString) is used in Rx. From a semantic
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standpoint, lack of signals means that the language does
not distinguish between continuous (signals) and discrete
(events) time-changing values [3]. Such distinction may help
developers who see an application for the first time to get
a better intuition of the expected use of a reactive value.
Signals are usually adopted to express the case where the
important aspect is the value that the variable holds, for
example the mouse position. Events are rather used for cases
where a change is important, for example a mouse click. On
the one hand, this distinction may help developers in the
comprehension process, on the other hand, a language in
which events are the only reactive abstraction may be simpler
to master.

In general, it is hard to estimate the impact of these
differences – hence, whether our results generalise to Rx
and similar languages. Our qualitative analysis (Section 5)
suggests that reduced boilerplate code, better readability,
automatic consistency, shorter code, declarative nature, ease
of composition, and separation of concerns are among
the causes of the advantages of RP against OO in the
experiment. We speculate that these advantages also apply to
Rx and similar languages given that their design is close to
REScala’s. Similar to REScala, other RP languages also make
dependencies explicit and, hence, improve comprehensibility,
even if their syntax differs (e.g., the Signal vs. map case
described above). Other RP languages also enforce automatic
consistency among event values, because event propagation
is automatically handled by the runtime and are additionally
declarative and easier to compose thanks to composition
operators (names of operators may be of course different
than REScala). We believe that further experiment should
compare the different features of RP languages. This would
help in determining which features are the best to have in an
RP language.

8 RELATED WORK

We organize related work as follows. First, we outline
recent research on RP. Second, we provide an overview
of existing empirical studies on program comprehension.
Last, we enlarge the scope to other studies and controlled
experiments on programming techniques. We are not aware
of any controlled experiment on RP.

Reactive Programming. Reactive extensions of existing lan-
guages include FrTime [3] (Scheme), FlapJax [4] (Javascript),
Scala.react [6] (Scala), and REScala [5] (Scala). An overview
of the available solutions and of the advanced features each
language adds to those presented in Section 2 can be found
in the survey by Bainomugisha et al. [11].

Current reactive languages have been influenced by
several approaches, often from quite different domains.
Functional-reactive programming was proposed in the
strictly-functional language Haskell and applied to graphic
animations [1], [2], robotics [52], and sensor networks [53].
Graphical libraries, such as Garnet and Amulet (Lisp) [54],
apply concepts of dataflow programming to relieve the
user from manually updating dependent values. Researchers
also investigated languages in which developers can specify
bidirectional constraints [55]. In case not all constraints can
be satisfied, a priority rank is applied. More recent research

on constraints languages focuses on the integration of object-
oriented programming and declarative constraint solving to
provide the advantages of both paradigms [56], [57].

Finally, current research directions in RP include exten-
sion to the distributed setting [58], [59], integration with the
OO paradigm [60], and advanced type systems to provide,
e.g., bounded memory-consumption guarantees [61].

Studies on Program Comprehension. An introduction to the
issues of designing studies on program comprehension (e.g.,
methodology, experiment designs, threats to validity) is in
the work by Di Penta et al. [50]. Storey [62] surveys the theories
that have been formulated for program comprehension and
their implications on tool design.

Pennington [29] shows that different language designs
influence whether control flow or data flow questions are
easier to understand for programmers. Ramalingam and
Wiedenbeck [63] organize an empirical study on program
comprehension in the OO and in the imperative style. They
find that novice developers achieve better program compre-
hension in the imperative style. However, in contrast to the
mental representation of imperative programs, which focuses
on program-level knowledge, the mental representation of
OO programs focuses on domain-level knowledge. Corritore
and Wiedenbeck substantially confirm these results [64].

Other researchers organized controlled experiments to
investigate the effect of tools on program comprehension.
Quante [22] studies the impact of dynamic object graphs
on program comprehension. Wettel et al. [65] show that
the CodeCity 3D software visualization tools significantly
increase task correctness and reduce task completion time.
Similarly, Cornelissen et al. [66] evaluate the enhancement
of program comprehension by visualizing execution traces
with tools.

Studies on Programming Techniques. Pankratius et al. [67]
organize an empirical study to compare the use of Scala and
Java to develop multicore software. Contrary to a common
belief, they find that Scala does neither reduce development
effort nor debugging effort. Prechelt presents an empirical
study that compares seven programming languages along
directions that include working time to complete a task and
productivity [68]. Among other results, Prechelt observes that
the language choice may cut the writing time for a program
by half.

Hanenberg organized a series of controlled experiments
to evaluate the effect of types in programming languages,
focusing on various aspects. These experiments find no posi-
tive effects of static type systems on development time [24]
and show that similar uncertainties hold for the influence
of static type systems on the usability of undocumented
software [25]. Also, the experiments show that generic
types improve documentation, do not significantly change
development time, and reduce extensibility [49]. To the best
of our knowledge, systematically studying the effect of RP
and, more broadly, of data flow languages is largely an open
problem [69].

Beside comparing languages or programming paradigms,
researchers focused on specific language abstractions and
API design. Stylos and Clarke find that APIs requiring object
initialization via setter methods are preferred and less prob-
lematic then APIs using constructor parameters [70]. Stylos
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and Myers study the effects of method placement on API
learnability [71]. They find that programmers are significantly
faster using the APIs in which methods combining different
objects are placed in one of the objects’ classes rather than
the API in which methods for combining different objects
are placed in a helper class. Ellis et al. study the effect on
usability of the Factory design pattern [72]. They conclude
that creating objects from factories is significantly more
time consuming for programmers than object creation from
constructors – regardless of the level of experience of the
programmer using the API.

9 CONCLUSION

Reactive Programming is a paradigm that specifically ad-
dresses reactive software that needs to respond to internal
or external stimuli with a proper action. The advantages
of RP over the traditional Object-oriented paradigm, espe-
cially with regards to program comprehension, have been
advocated for some time now, but little evidence has been
provided in practice. In this paper, we presented a con-
trolled experiment to evaluate the impact of RP on program
comprehension. Our experiment involved 127 subjects and
our results suggest that RP significantly outperforms OO.
The RP group provided more correct results, while not
requiring more time to complete the tasks. In addition, we
found evidence that comprehension of RP program is less
correlated to programming-skills level than comprehension
of OO programs. Finally, through qualitative analysis of
the feedback provided by subjects, we identified the main
reasons behind the ease of comprehending RP programs
(e.g., reduced boiler plate code and better readability). On
the other hand, we also identified reasons that might prevent
the adoption of RP (e.g., use of functional programming
concepts). Besides providing the first empirical evidence with
regards to the advantages of RP in program comprehension,
our results can help guide future research on reactive
applications.
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